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Abstract An efficient two-dimensional tlme-domam applIcation of the Boundary Element Method
is presented to solve elastodynamic boundary initial-value problems in solids of general anisotropy.
The method is based on the use of integral expressions for the Green's functions derived by Wang
and Achenbach (1994) [Elastodynamic fundamental solutions for anisotropic solids. Geophn. 1.
1m. 118, 384-39~J. and on the partition of these Green's functions into singular static and regular
dynamic parts. The singular static parts are the elastostatlC Green's functions. which have relatively
simple explicit expressions in closed form. The regular dynamIc parts are given in terms of lIne
integrals over a unit circle. whose integrands have a simple structure which physically corresponds
to a superposition of plane waves. The partition of the Green's functions leads to the decomposition
of the singular elastodynamic boundary integral equation into terms corresponding to a singular
elastostatic integral equation plus regular dynamic terms The calculation drort is reduced by
analytically evaluating both the integration over each boundary clement and the time-convolution
over each time-step. As a result only regular line lI1tegrals over the unit circle have to be computed
numerically. ApplIcations are discussed for scattering of elastic waves by cavities. The method has
been checked by comparing numerical results against existing analytical solutions for an isotropic
solid. t"umerical results for scattering of elastic waves in a transversely isotropic material by a
circular cylindrical cavity have also been Llbtained Copy nght' 1996 Elsevier Science Ltd.

I. INTRODLCTlOt"

Many solids are either intrinsically anisotropic. or they are anisotropic on some length scale
of the deformation relative to the characteristic length of the structuring of the solid.
Examples are the earth. ice. composites. and piezoelectric materials. Elastodynamic bound­
ary/initial-value problems for bodies of anisotropic linearly elastic solids are generally
solvable only by numerical techniques. Among these techniques. the reduction of the
problem formulation to a boundary integral equation for field variables on the boundary
of the body, and the subsequent calculation of these variables by the boundary element
method (BEM), has proven to be efficient and accurate. Once the fields on the boundary
of the body have been obtained. the fields elsewhere in the solid can be determined by the
use of an appropriate elastodynamic representation integraL The method is particularly
attractive for scattering analysis in unbounded bodies because only the internal boundaries
need to be discretized. and the radiation conditions are satisfied automatically.

For a successful implementation of the BEM. the Green's functions, i.e., the dis­
placement and stress fields in an unbounded solid due to the application of a point force,
must be known in relatively simple form since they are the kernel functions in the boundary
integral equations and must be computed many times in the process of solving the discretized
system of equations. In an isotropic solid explicit expressions for the Green's functions are
relatively simple. For two-dimensional (2-0) static problems in anisotropic solids relatively
simple explicit expressions for the Green's functions are also available (Barnett and Lothe,
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1973; Hwu and Yen, 1991 ; Stroh, 1958; Ting, 1992: Wang, 1994). Three-dimensional (3­
D) static and 2-D time transient Green's functions also have explicit expressions in closed
form (Wang, 1995; Wang and Achenbach, 1992), but they are much more complicated.
For a solid of general anisotropy, 3-D time-harmonic and time-transient Green's functions,
as well as 2-D time-harmonic Green's functions, do not have explicit solutions in closed
form. The BEM has been applied to 2-D static problems (Cruse, 1988) and to some three­
dimensional (3-D) static problems in anisotropic solids (Vogel and Rizzo, 1973; Wilson
and Cruse, 1978; DiNicola, 1994).

In a recent paper of Wang and Achenbach (1994), a method to construct the Green's
functions based on the use of the Radon transform has been presented. By this method 3­
D and 2-D time-domain elastodynamic Green's functions for linearly elastic anisotropic
solids can be obtained in a straightforward manner. The Green's functions in the frequency­
domain follow directly by an evaluation of the Fourier transforms of the time domain
solutions. The solutions are in the form of a surface integral over a unit sphere for 3-D
cases and a contour integral over a unit circle for 2-D cases. The integrals have a simple
structure which is very attractive for practical applications, especially when integrations
and differentiations must be carried out. In this paper, we present a novel BEM approach
using these integral expressions for the Green's functions. This approach is applicable to
2-D and 3-D elastodynamic problems in both time-domain and frequency domain, but the
material presented in this paper is concerned with 2-D time-domain problems.

Even though 2-D time-domain Green's functions have explicit solutions in closed
form, we choose to use the integral expressions for the Green's functions because they are
easier to use. The structure of the integral expressions simplifies the BEM formulations.
The numerical computations then reduce to an extent that the computational time for
general anisotropy is close to or even less than that required by conventional BEM for
isotropic materials.

The first important step is the decomposition of the Green's functions into singular
static and regular dynamic parts. This decomposition separates the singular elastodynamic
boundary integral equation into a singular elastostatic integral equation plus regular
dynamic terms. The singular parts of the Green's functions correspond to the elastostatic
Green's functions in anisotropic solids. The regular dynamic parts are given in terms of
line integrals over a unit circle, whose integrands have a simple structure which physically
correspond to a superposition of plane waves. The second important step is to analytically
evaluate the integration over each boundary element as well as the time-convolution over
each time-step. As a result the only numerical computations are regular line integrals over
the unit circle.

The present work provides a powerful numerical technique to solve boundary/initial­
value problems in general anisotropic solids. The method has been demonstrated by check­
ing numerical results against existing analytical solutions for an isotropic solid. Numerical
results for scattering of acoustic waves by a cylindrical cavity in a transversely isotropic
material are also presented.

2. STATEMENT OF THE PROBLEM

2.1. Basic equations
We consider a 2-D elastodynamic boundary/initial-value problem in a homogeneous

anisotropic linearly elastic solid, and we define a fixed rectangular coordinate system, X h so
that the 2-D problem is stated in the (XI' x2)-plane and the field quantities are independent
of .\,. The fields are governed by the equations of motion and the stress-displacement
relations. given by

(1)

(2)

where u, and (Ii, are the displacement and stress components, p is the mass density, and cljpq
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Fig. 1. Geometry of the problem.
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is the tensor of elastic moduli. Substitution of (2) into (I) leads to the partial differential
equations

(3)

where

(4)

Note that eqn (3) corresponds to a set of three coupled equations. Antiplane and inplane
motions generally do not uncouple in anisotropic solids.

Throughout this paper, a Roman suffix takes the values of I, 2 and 3, while a Greek
suffix takes the values of I and 2 only. The summation convention is applied over the range
of the suffixes. Bold-face letters are used to denote 2-D vectors, e.g., x has components x"
and s' x = S,x,. For a function f(x, t), we denote the derivatives with respect to x, by i7J
orf,; and the derivatives with respect to time t by cJor}:

2.2. Boundary integral equations/or scattering oj" elastic Irat"es
We are interested in scattering of elastic waves in anisotropic solids. Particularly we

shall consider a cavity DC in an unbounded anisotropic solid D subjected to an incident
wave u~n (see Fig. I). The solid is at rest before the application of the incident wave. When
the incident wave reaches the cavity, a scattered wave field u;' is generated in order to satisfy
prescribed boundary conditions on the surface of the cavity. cD. The complete displacement
wave field is then given by

U i = u:" +u;'. (5)

For this elastodynamic boundary value problem. the usual time-domain integral rep­
resentation in terms of the displacement U i and traction t i on the boundary cD is given by
(Achenbach, 1972)

u,(x.t) = u;"(x.t)+ 1D g,,(y-x.t)*tJy.t)dy- L,hdy-x.t;e(y)]*u,(y,t)dY XED (6)

where x and yare usually referred to as the source point and the field point, respectively.
In eqn (6) g,,(x, t) is the elastodynamic displacement Green's function which corresponds
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to the displacement field in the xi-direction produced by an impulsive line load acting in
the x/direction, applied at time t = 0 along the xraxis, and hii[x, t; e] is the corresponding
traction defined by

(7)

Here e is the outward unit normal to the boundary cD (Fig. 1). In eqn (6) the asterisk
denotes the convolution with respect to time t. For example,

glj(y-x, t)*ti(y. t) = [g,i(y-x,t-T)tJY,T)dr.
."

When XED is taken to the boundary cD. eqn (6) yields the boundary integral equation:

Cj/(X)U,(X.t) = U;"(X,t)+J' gi,(y-x.I)*I,(y,t)dY-PVJ· hdy-x,t;e(y)]*uj(y,t)dy
,-D in

XEcD (8)

where PV stands for the principal value of the integral and clj(x) defines the free terms
resulting from the contribution of hlj[Y - x. t; ely)] as x ~ y. Calculations for clj(x) will be
given in Section 3.4.

Let us choose a time axis such that the incident wave reaches the cavity at time t = O.
Thus. for t < O. u:n(x. t) = Ui(X, I) = tj(x, t) == 0 on XE tD. For such zero initial conditions
eqn (8) yields unique and stable solutions for ui(x, t) and/or ti(x. t) on x E i'D, for appro­
priately prescribed boundary conditions. For boundary-value problems of the first kind the
prescribed boundary conditions are given by tJx, t) on x E cD, while for boundary-value
problems of the second kind they are uj(x, t) on x E aD. For mixed boundary-value problems,
I;(X. t) are given on part of the boundary. while on the remaining part of the boundary
uj(x.l) are given. Once ui(x, t) and I;(X, t) on the boundary xEcD are obtained from eqn
(8), the complete fields in the domain D can be determined by eqn (6).

3. GREEN'S FU\lCTIONS AND SINGULAR AND REGULAR PARTS

3.1, Green'sfunclions
The integral expressions for gil and h" derived by Wang and Achenbach (1994) are

given by

H(t) r \[ P,;' do
glj(x. t) = -, I.. ..

4rr' "n elm - I P( m (",I + 0 x

H(r) _ .\1 Q;;' do
h,,(x.t;e) = nJ I-.

4rr 2 'n, ~ ] m ~ ] pc,;, e"J + 0 • x

(9)

( 10)

where H(r) denotes the Heaviside step function. [pc,;,(o)] and P,;'(o) are the eigenvalues and
the projection operators for the matrix

(11 )

and
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( 12)

In eqns (9) and (10), M (I :S; M:S; 3) is the number of distinct eigenvalues [pc~,(n)l deter­
mined by the characteristic equation:

det [CI(n) - pc,~,6,;l = o. (13)

Eq uation (13) is a cubic polynomial for [pc,~,(n)l. It determines three positive real-valued
c",. If all C/Ii are distinct. i.e., C1 "# C2 "# c, (M = 3), p;;'(n) are given by

where

E"POt = 1/

II E"
.4(jl{

£;;' == adj (l'/(O) ~ pc;,,6 i/ : .

(14)

(15)

When C I "# C2 = c, (M = 2), Pi~ is also given by (14) but P;, = 6,,-P,~. When C1 = C2 = c,
(M = I), P,~ = 6,;.

It is worth noting that the integrals (9) and (10) are defined over the unit circle 101 = I
and the integrands correspond to plane waves (functions of c/lit + O' x) propagating in the
direction ~n. The simple structure of superposed plane waves is fundamental in the
derivations throughout this paper.

3.2. Singular static and regular dynamic parts
Consider the time-convolution of the Green's functions with a sufficiently smooth

functionf(t) withf(t) == 0 for t < O. By integration by parts we obtain (Wang and Achen­
bach, 1994).

h,/(x. t : e)*f(t) = h~(x. t ; e )*/(1) + h;)(x : e)j(t)

(16)

(17)

where g~(x, t) and h~(x. t: e) are time-dependent regular functions. while g;~(x) and
h;)(x; e) are time-independent singular functions.

The regular dynamic parts are given by (Wang and Achenbach, 1994)

and

H(t) ~ .\1 P,"
g~(X,t)=--21 ~---"2Ioglc",/+n.xldn,

4rr -.J In! = 1 !II - 1 {)( 111

I< H(t) r .\1 Q;;'
h,,(x.t:e) =-~"I L -.; loglc",/+n·xldn.

4rr ~a=lm=lp(t1I

(18)

(19)

The static singular parts g;~(x) and h;)(x : e) can be reduced to relatively simple closed
form expressions. In eqn (16), g;}(x) is given by (Wang and Achenbach. 1994)

-I r
g;)(X) = - 2 I 1,f l (n) log In'xl dn.

4rr • n, = I

For positions ahead of the wavefront. eqn (18) reduces to time independent fields which
just cancel the static singular parts. Now. introducing '1 = n2!n lo we have
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(20)

where Cij are constants given by

-IICij = -, Ci 1(n) log In,1 do
4n- Inl ~,

and

Application of the residue calculus to the integral in eqn (20) yields (Wang, 1994)

where

and I]m are the roots with 1m (I]m) > 0 (m = 1,2,3) of

(21)

(22)

(23)

(24)

(25)

We note that g~(x) given by eqn (23) corresponds to the elastostatic Green's functions for
anisotropic solids obtained by Wang (1994). The constants Cij are inessential in the ela­
stostatic Green's functions, but they are required here to maintain the quiescent field ahead
of the wavefronts generated by the line force. It is interesting to note the similarity of eqn
(23) with log (z) (z = XI + iX2), the Green's function of Laplace's equation. Equation (23)
will be used later to analytically evaluate integrations over the boundary elements.

Next we present some details that are useful in the numerical evaluation of g~(x).

According to (11), we may write

(26)

where

(27)

and M[ is the transpose of M ij' Since D(I]) is a polynomial of order six with real-valued
coefficients, it has three roots at Yfm defined by eqn (25) and three roots at flm. Thus

6 3

D(Yf) = L akl]k = a 6 L (I] -l]m)(1] - fim)
k=O m~1

(28)

where flm are the conjugates of I]m and ak are the coefficients of the polynomial D(1J). From
eqns (22) and (26), it is easy to conclude that

(29)

As a consequence of eqn (28), we have
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(30)

It is expedient to give ht(x; e) in terms of a traction potentiall1>ij(x) as (Ting, 1992)

(31 )

where Cs = SIC I + s:c: is the differential in the direction s, with s being the unit tangent vector
of the boundary cD. Thus S' e = O. In the coordinate system shown in Fig. I, SI = e: and
Sz = - e l • The traction potential is given by

1 I' [Bi,(l1n.) ]l1>,,(x) = - 1m c )log (zm)
1T m = I '1,D('1m

where

According to eqns (22) and (26), B,,(I1) can be written as

where bt (k = 0--5) are the coefficients of the polynomials Brj(I1). Specifically

(32)

(33)

(34)

(35)

The results of eqns (34) and (35) will be used later to calculate the free term cij'

Up to now we have assumed that 11m are distinct roots ofeqn (25). For certain materials,
e.g., isotropic solids, 11m are not all distinct. For such cases, we say that the solid is
degenerated. For degenerated solids the solutions for gt(x) and l1>ii(X) given by eqns (23)
and (32) must be modified since the denominator a~D(l1m) = O. Degenerated solids have
been discussed by Wang (1994). In practical numerical computations, however, satisfactory
results can be obtained by slightly changing the elastic constants Crjpq so that all 11m become
distinct. Finally we remark that although log(zm) is multi-valued, gt(x) and l1>ij(x) given by
eqns (23) and (32) are single-valued as they should be.

3.3. Decomposition of the boundary integral equations
Substitution ofeqns (16) and (17) into (6) leads to

u,(x, t) = uj"(x, t) + ID gt(y - xlti(y, t) dy - L, ht[y - x; e(y)]u;(y, t) dy

+ IDg~(y-x,t)*il(y,t)dy-ID h~[y-x,t;e(y)]*ui(y,t)dy, XED (36)

which, when xED approaches to the boundary cD, yields

Ci,(x)u;{x,t) = u!"(X,t)+f. g;;(y-X)t;(y,t)dy-pvf. ht[y-x;e(y)]u;(y,t)dy
rD ,D

+JDg~(y-x,t)*i;{y,t)dY-L) h~[y-x,t;e(y)]*ui(y,t)dy, xEoD. (37)

We note that the time convolutions involve only the regular dynamic terms g~ and
h~. Without the last two terms, eqn (37) corresponds to the boundary integral equation for
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D

aD

Fig. 2. Geometry for the free term C,,'

aD

an elastostatic problem. The calculation of the singular dynamic integrals is thus simplified
to the evaluation of singular static integrals and regular dynamic integrals.

3.4. The/ree term clJ

Equation (37) also shows that the free term clJ(x) comes from the singularity of
h~[y - x; e(y)] as x ----> y and has nothing to do with h~. There are many ways to evaluate
clJ(x). Here we follow the approach commonly used in the BEM for isotropic solids.

Assume that the boundary curve cD is not "smooth" at x, meaning that the two
tangents approaching x from different sides do not coincide (see Fig. 2, where L 1 and L 2

denote these two tangent lines). The free term may then be defined by

1°'c,/x) = Lim . ht[r; e]r d8 with
r- 0 .

II]

r = Irl and e = -rlr (38)

where 8 is the angle between r and the xI-axis. The geometry of r(8), 81 and 82 is indicated
in Fig. 2. As shown in Fig. 2, r(8) defines a circle centered at x with radius r. In eqn (38)
the integral is defined along the part of the circle that is inside the domain D. Substitution
ofeqn (31) into eqn (38) yields

(39)

Here, Cs = (Lr) Co and eqn (32) has been used.
If the boundary is smooth at x, then 82 = 81+nand eqn (39) reduces to

(40)

This result can be simplified by observing that
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(41 )

where C is a closed contour in the complex IJ-plane enclosing all the poles at IJm and fim. On
the other hand. we also have

f
B(17) fcn B ·(Inleili

)
'I d L' 'I 'f . ('1 1 ill) dl' 2'';-- IJ = 1m .. ---- / IJ e 1 = J[!Uj'

C D(IJ) 1',- f. () D(llJle'{!) I

(42)

The last equality is obtained by using eqns (28). (29). (34) and (35) and by taking the limit.
Comparison of eqns (40). (41) and (42) reveals that

(43)

which agrees with the well-known result for an isotropic solid.
This agreement is not at all surprising. As a matter of fact. the result of eqn (43) can

also be obtained based on simple physical arguments. As we know. hi; corresponds to the
traction produced by a static line force of unit amplitude in the direction Xi' Thus. cy defined
by the integral (38) has the physical meaning of the force resultant from the integration of
the traction over part of a circle around the line force. I f the integration is carried out over
the complete circle. we should have C'i = 6,/ because the overall traction must balance the
line force. On the other hand. referring to Fig. 2. since

h;;[-r: ~e] = h;}[r:e] (44)

the integration over half of the circle must equal half of that over the complete circle.
Hence. we have eqn (43). Equation (44) can be verified from either eqn (31) or observations
on the symmetry of the problem. We note that eqn (44) depends only on the symmetry in
a homogenous space. The result of eqn (43) should be universal for a smooth boundary in
any kind of homogenous material.

4. /,<UMERICAL IMPLEMENTATIO:'-J

4.1. Time-stepping technique oj' time-domain BEM
The basic idea of the BEM is to approximate the fields on the boundary by their values

at a finite number of points and at a finite number of times along the time axis. In doing
so. the boundary integral eqn (37) is replaced by a finite system of linear algebraic equations
that can be solved numerically. The approximation is achieved by using shape functions.
In this section the basic steps of the conventional time-stepping technique of the time­
domain BEM (Kitahara. Hirose and Achenbach. 1992: Manolis and Beskos. 1988; Wang
and Takemiya. 1992) are briefly reviewed.

Let us choose N points x = x" (II = I-N) on the boundary x" E DD and K points t = t k

(k = I K) along the time axis. For simplicity of notation. let

[U;'k. t;'k. U/'lik. c;~] = [u,(x. t). t,(x. t).//"(x. t). cjl(x)] at (x = x". t = tk). (45)

The fields on the boundary are approximated by

\ "
u,(x. t) ~ I I ¢::(x)qJ~(t)U/k. and

!I = I k -'-'- I

\ "
!,(x. t) ~ I I ¢~'(X)qJ;(t)!7k

/I = I k· = 1

(46)

where ¢::(x) and ¢;'(x) are the spatial shape functions associated with x". and qJ~(t) and
qJ~ (t) are the temporal shape functions associated with tk

• The subscripts u and! indicate
the correspondence to the displacement u, and traction t, respectively. Note that in this
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section and in the sequel, the summation convention applies to the subscript j only. As
usual, we require

(47)

The computation for the time-convolution can be reduced significantly if the time axis is
divided into equal increments IJ.t (thus, t k = klJ.t) and if the temporal shape functions are
chosen such that

Equation (48) means that the temporal shape functions have the same shape for different
time-steps, and that the current events at t = t do not influence previous events at t :( tk

-
I

•

Substitution of eqns (45) ~ (48) into eqn (37) leads to

N

c'.'.l umK = u.'n.mK + " [Gs... (m n)flK _ HS... (m n)unK]
II I ! i...J If 'I II ~ I

n = I

K N

+ L L [G~(m,n;K-k+I)t7k-Hff(m,n;K-k+I)u7kl (49)
k ~ I n ~ 1

where

H~(m,n) = ID h~[y-x;e(y)l¢~(y)dy at (x = xm ) (SOb)

Equation (49) can be written in matrix form as

K

CUK = UK+GsTK-HsUK+ L [GLk+ITk-HLk+1Ukl
k~l

(52)

where, for a fixed k, Ub Tk and U;; are 3N vectors corresponding to u;(xm t), t,(xm t) and
u;n(xm t), respectively (e.g. the 3N vector Uk is constructed from u,(xm tk) as i is 1,2 or 3,
while for each i, n runs from I to N). The 3N x 3N matrices C, GS

, H S
, Gt and Ht are

similarly constructed.
We may put eqn (52) into the following form:

(53)

where

(54)

and
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D

Fig. 3. Elements on discretized boundary.

K··J

FK = U:;;+ L [GLk+1Tk-H~-k+lUd·
k~l

3853

(55)

We note that FK consists of the incident wave term and the accumulated effects of previous
responses. For simplicity of explanation, let us consider a boundary-value problem of the
first kind where T K are the prescribed boundary conditions. If FK is known at time t = t K

we can determine UK from eqn (53) simply by an inversion of H. We start from K = I
where FK = U:;; and thus UK can be determined. These solutions will then be used to
determine FK+ J for the next time-step by eqn (55), and subsequently to calculate U K+ 1 by
eqn (53). Repeating the procedure in this way, one time-step after another, solutions along
the time axis can be computed.

4.2. Evaluation of0' and H S

From eqn (53) it can be seen that the essential part of the time-domain HEM is the
computation of the matrices GS

, H S
, Gf and Hf. In this section we derive closed form

solutions for Gf(m, n) and Hf(m, n) defined by eqn (50). To carry out the integrations in a
practically efficient way, the boundary is usually discretized into "elements" and the spatial
shape functions are defined locally. Here, we consider the simplest case of straight line
elements and constant spatial shape functions, although the method works as well for
curved elements and higher ordered shape functions.

We approximate the boundary by straight line elements L n (n = I-N) as shown in Fig.
3. Thus

\"

cD:::: L L",
n = 1

Let XII be taken at the center of L n and let us choose constant shape functions as

{
I ifxELn

¢~(x) = ¢;'(x) = .
o otherwise

Then, Gt(m, n) and Ht(m, n) defined by eqn (50) can be written as

[Gf(m,n), Hf(m,n)] = [Vt(x;s,a), wt(x;s,a)] at (x = X"-x",,S = sll,a = an)

where

(56)

(57)

(58)
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f
a

W;}(x;s,a) = -a h;Hx+s¢;e)d~ (59)

and s" and 2a" are the unit tangent vector and the length of L", respectively (see Fig. 3).
Now, substitute eqns (23) and (31) into (59) and evaluate the integrals. We obtain

where

with

8~,(x;s,a) = [:,;, [og(:,;,)-:", log (:",)];(d",'s)-2a,

8;,(x; s, a) = [log (:,;;) -log (:~, )]

d", = {I.t)",] and :,~ = d",·(x±as).

(60)

(61 )

(62)

(63)

(64)

We note that in carrying out the integration, analyticity of the integrand has been assumed.
Thus, when producing solutions for eqns (62) and (63), the branch of log (z) must be
properly chosen such that the straight line connecting z,;; and z,;; lies on a single sheet of
log(z).

The results presented above do not include the singular case

f"H;(n,n) = W;;(O;s,a) = PV h;;(s¢;e)d¢ at (s,a) = (s",a,,).

"

A direct evaluation of the integral in the sense of Cauchy's principal value results in

H;;(n, n) = O. (65)

This result can also be obtained by observing that h;( - x; e) = - h;;(x; e) at x t= O. Finally,
we note that using straight line elements and constant spatial shape functions means
c;; = ~bu. since at x" the element is smooth.

4.3. Evaluation ojGt and Ht
To obtain G~(m,n, k) and H~(m, n, k) defined by eqn (51) we also need to evaluate the

time-convolution. We note that the time-convolutions in eqn (51) involve ipu and (Pr' This
suggests that we should choose the temporal shape function for the displacement one order
higher than for the traction. Here, we consider the simplest case:

I
qJ,,(t) = - [t H(t) - 2(t - /'o"t)H(t- /'o"t) + (t - 2M)H(t - 2/'o"t)]

/'o"t

ifJr(t) = H(t) - H(t - M).

(66)

(67)

Thus, over each time-step the displacement is assumed to vary as a piece-wise linear
function, while the traction is assumed constant.

Substituting eqns (18), (19), (57), (66) and (67) into eqn (51), we obtain
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[G~(m,ll;k).H~(m,ll;k)]= [V~(x,t;s,a), W~(x,t;s,a)l
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at (x = xn-xn" t = tk,s = s,,,a = an) (68)

where

f
' ~"

W~(x.t;s,a) = J h~(x+s~,t-~)ep,,(Od~d(.
",0 (/

Integrating with respect to ~ and ( using eqns (18). (19), (66) and (67) yield

(69)

(70)

(71 )

where

I •
W~ (x, t ; s. a) = -~ J

41r n

\1 Q;;" .,L -, \fI,~,(x. t) dn
]/11 =- 1 PC;n

(72)

in which

\fI,;, (X. t) = \fI",(X, t) - \fI",(X. t - ~t),

\fI", (x, t) = H(t)[(X,~ log IX,~ I - X'" log Ix", I)(n' S) - 2a],

x,~ = c",t+n"(x±as).

(73)

(74)

(75)

(76)

In eqns (71) and (72) the integrals over the unit circle have to be computed numerically.
The numerical integrations are easy to perform because the integrands are not singular
functions. We note that in the integrands of eqns (71) and (72), c",(n) and Pij(n), defined
by eqns (13) and (14), are independent oflocation and time. Thus they need to be computed
only once for different elements and time-steps. The components Q;j'(n, e) given by eqn (12)
require some additional calculations. The only components in the integrands that have to
be computed for each element and time-step are \fI,;,(x. t) and \fI~,(x, t) given by eqns (73)
and (74). These functions are rather simple and require little computational time. Since
most numerical results can be repeatedly used for different elements and time-steps, our
method is especially powerful for a large system with many elements and time-steps.
Computations for GS

, n'. G[ and H[ can be further reduced if we take into account that
the material is undisturbed ahead of the wavefronts.

5. NUMERICAL EXAMPLES

Numerical computations have been carried out for the scattering of a plane transient
wave by a cylindrical cavity in an unbounded solid. We first check the method by com­
parison of our results with existing solutions for a cavity in an isotropic solid. Then we
present solutions for a transversely isotropic material. In all the cases, a circular cylindrical
cavity of radius a is considered and the cylindrical boundary is divided into 48 elements
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Fig. 4. Geometry of cylindrical cavity.

of equal size. The origin of the coordinate system is at the center point of the cavity
(Fig. 4).

5.1. Isotropic solid
The isotropic solid considered is defined by cLlcT = J3 where CL and CT are the

longitudinal and transverse wave velocities. The incident wave is chosen as

which is a longitudinal plane wave propagating along the xI-axis.
Scattering of a longitudinal wave by a circular cylindrical cavity in an isotropic solid

has been solved analytically in the frequency domain by Pao and Mow (1973). The transient
solutions have been produced by use of the fast Fourier transform. These transient solutions
are used to check our numerical results.

The time increment has been taken as cT!1tla = 0.12. Figure 5 shows the displacements
in the xl-direction as functions of time at uniformly spaced points A, B, C, D, and E on the
upper-half of the cylindrical boundary as shown in Fig. 4. Excellent agreement between
our results (solid lines) and the analytical results of Pao and Mow (diamonds) can be
observed.

5.2. Transversely isotropic solid
The xl-axis is taken along the axis of symmetry (Musgrave, 1970). For a transversely

isotropic solid the non-zero elastic constants are CII = C33' C22, C\3, CI2 = C23, C44 = C66, and
C55 = ~(C33-C\3)' Here Cm " is the shortened matrix notation for CilPq (Musgrave, 1970). As
an example we consider a graphite-epoxy composite which has the following elastic con­
stants CII = 160.7, C22 = 13.92, CI2 = 6.44, C66 = 3.5, and C55 = 7.07, in units of GPa.

Due to the material symmetry, incident plane waves propagating along the x2-axis can
be purely longitudinal or transverse waves. We consider a longitudinal incident wave in the
form of a triangular pulse given by
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Fig. 5. Displacement on the surface of the cavity In an isotropic solid. Solid lines: solution of this
paper. Diamonds: analytical solution.

with U I = U3 := 0, and an analogous transverse wave given by
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with Ul = U3:= 0. Here, PI = t-c l
l (xl+a), Pl = t-c2

1(xl+a), 15 = 0.25a. The wave vel­
ocities are defined by cllcl = 1.994 and Cl = ..jC66!P, Equations (77) and (78) represent
triangular pulses with Uo as the height and 215 as the base length of the triangle.

Graphite-epoxy composite is a strongly anisotropic material. The anisotropic proper­
ties of the material affect the velocity and wavefront curves, as shown in Fig. 6. The results
are plotted in terms of the ratio to J c661p. Figure 6a shows that the velocity of pseudo
longitudinal waves is the largest in the xI-direction. The velocity of pseudo transverse waves
increases in directions away from the xI-directions, but then shows a significant dip in the
xl-direction. The concavity of the velocity curves in some ranges of the directions of wave
propagation gives rise to the peculiar shapes of the wavefronts shown in Fig. 6b. In the X I­
direction the wavefronts are simple. The longitudinal wave arrives first and the transverse
wave follows. Near the xl-direction the significant differences at neighboring points in the
velocities of pseudo transverse waves gives rise to the overlapping wavefronts. For wave
motion that does not depend on X3 in a transversely isotropic solid, the particle motion in
the x3-direction will not be generated, and hence the corresponding velocity and wavefront
curves are not shown in Fig. 6. The velocity and wavefront curves help in interpreting the
results. They also help in determining the time increment M, since M times the largest plane
wave velocity must be small enough as compared to the length of the incident pulse and
the size of the elements. In this computation, we found J C66! P I'!tla = 0.05 to be satis­
factory.

Figures 7 and 8 show images of scattered fields due to the presence of the cavity.
Results of this type are of great interest in nondestructive evaluation where information on
scattered waves is used to detect voids inside a material. The images are shown in gray scale
which represents the amplitude of the displacement field. Shown in Fig. 7 are the scattered
wave fields for the incident longitudinal pulse at times: r = Jc 66 1p tla = 0.05, 0.25, 0.50,
0.75, 1.00, 1.25, 1.50, 2.00, and 2.50, respectively. Similarly, the scattered fields for the
incident transverse pulse are plotted in Fig. 8. Figures 7 and 8 show that shortly after the
incident wave hits the cavity, strong backscattered fields are generated together with weaker
fields that are scattered to the sides. The sideways scattering is due to the higher longitudinal
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Fig. 6. (a) Plane wave velocity curves in tenns of the ratioto~. (b) Wavefronts corresponding

to velocity curves.

wave speeds in the xI-direction. The wavefronts are quite similar in shape to the wavefronts
shown in Fig. 6b, including the presence of similarly shaped overlapping wavefronts. As
the incident wave passes the cavity, scattered waves creep around the surface of the cavity
while shedding wave motion into the surrounding material. For the incident longitudinal
wave the shedding decreases temporarily when the midpoint of the cavity is passed, to pick
up again when the creeping waves reach the back of the cavity. At that point the remaining
creeping wave motion from both sides coalesces and generates a quite large signal which
proceeds to propagate in the xrdirection. Some creeping wave motion continues to propa­
gate around the cavity. For the incident transverse wave the general pattern is quite similar
except that the shedding of wave motion remains strong as the creeping waves pass the
midpoint of the cavity. The coalescence of the creeping waves from both sides does not
generate as strong a signal propagating in the xrdirection, as is the case for the incident
longitudinal wave.

Figures 9 and 10 show the scattered wave fields along a line above the cavity defined
by - Sa ~ Xl ~ Sa and X2 = 2a. The results are plotted as functions of Xl and dimensionless
time r. We see that near Xl = 0 a large amplitude wave arrives first, particularly for the
incident longitudinal pulse.
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Fig. 8. Scattered wave field for plane transverse wave incident along the xraxis at times: T =
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The real advantage of the BEM over other numerical methods is the capability to
produce accurate numerical solutions at specified points in the material without carrying
out calculations for the whole domain. This is extremely attractive in applications to
nondestructive evaluation where frequently the measurement is carried out over a small
area. The method developed in this paper has the potential to provide computer simulation
of a real testing situation in a very convenient way.

6. CONCLLJDI:-JG COMMENTS

An efficient algorithm for two-dimensional time-domain Boundary Element Method
has been developed to solve elastodynamic boundary initial-value problems in solids of
general anisotropy. The integral expressions for the Green's functions derived by Wang
and Achenbach (1994) are decomposed into singular static and regular dynamic parts. The
singular static parts, eqns (23), (31) and (32). correspond to the elastostatic Green's
functions. The regular dynamic parts. eqns (18) and (19). are given in terms of line integrals
over a unit circle. By analytically evaluating the integration over each boundary element
and the time-convolution over each time-step. the numerical computations reduce to an
extent that the computational time for general anisotropy is close to or even less than that
required by conventional BEM for isotropic materials. In the construction of the element
matrices. only regular line integrals over the unit circle have to be computed numerically.
Numerical calculations for scattering of elastic waves by a circular cylindrical cavity have
been carried out for an isotropic solid and a graphite-epoxy composite. Numerical results
for the isotropic solid agree well with the analytical solutions. Calculations for the graphite­
epoxy composite have shown some interesting phenomena of the scattered wave fields in
an anisotropic solid. This paper has demonstrated that the Boundary Element Method can
be efficiently applied to solve dynamic problems in solids of general anisotropy.
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